Announces the Ph.D. Dissertation Defense of

Catalina Aranzazu Suescun

for the degree of Doctor of Philosophy (Ph.D.)


March 18, 2019, 3:00 p.m.
Engineering East, 405
777 Glades Road
Boca Raton, FL

DEPARTMENT:
Computer & Electrical Engineering and Computer Science

ADVISOR:
Mihaela Cardei, Ph.D.

PH.D. SUPERVISORY COMMITTEE:
Mihaela Cardei, Ph.D., Chair
Imadeldin Mahgoub, Ph.D.
Jason O. Hallstrom, Ph.D.
Valentine Aalo, Ph.D.
Maria Larrondo-Petrie, Ph.D.

ABSTRACT OF DISSERTATION
Distributed Algorithms for Energy-Efficient Data Gathering and Barrier Coverage in Wireless Sensor Networks

Wireless sensor networks (WSNs) provide rapid, untethered access to information, eliminating the barriers of distance, time, and location for many applications in national security, civilian search and rescue operations, surveillance, border monitoring, and many more. Sensor nodes are resource constraint in terms of power, bandwidth, memory, and computing capabilities. Sensor nodes are typically battery powered and depending on the application, it may be impractical or even impossible to recharge them. Thus, it is important to develop mechanisms for WSN which are energy efficient, in order to reduce the energy consumption in the network. Energy efficient algorithms result in an increased network lifetime.

Data gathering is an important operation in WSNs, dealing with collecting sensed data or event reporting in a timely and efficient way. There are various scenarios that have to be carefully addressed. In this dissertation we propose energy efficient algorithms for data gathering. We propose a novel event-based clustering mechanism, and propose several efficient data gathering algorithms for mobile sink WSNs and for spatio-temporal
Border surveillance is an important application of WSNs. Typical border surveillance applications aim to detect intruders attempting to enter or exit the border of a certain region. Deploying a set of sensor nodes on a region of interest where sensors form barriers for intruders is often referred to as the barrier coverage problem. In this dissertation we propose some novel mechanisms for increasing the percentage of events detected successfully. More specifically, we propose an adaptive sensor rotation mechanism, which allow sensors to decide their orientation angle adaptively, based on the location of the incoming events. In addition, we propose an UAV-aided mechanism, where a UAV is used to cover gaps dynamically, resulting in an increased quality of the surveillance.

BIOGRAPHICAL SKETCH
Born in Medellin, Antioquia - Colombia
B.S., University of Antioquia, Medellin, Antioquia - Colombia, 2007
M.S., Pontifical Bolivarian University, Medellin, Antioquia - Colombia, 2011
Ph.D., Florida Atlantic University, Boca Raton, Florida, 2019

CONCERNING PERIOD OF PREPARATION & QUALIFYING EXAMINATION
Time in Preparation: 2016 - 2019
Qualifying Examination Passed: Spring 2016

Published Papers:
- Catalina Aranzazu-Suescun and Mihaela Cardei, Data Gathering in Wireless Sensor Networks. I. Sep, 2018. DOI: 10.1007/978-3-319-32903-1_257-1
- Catalina Aranzazu-Suescun and Mihaela Cardei, Anchor-based routing protocol with dynamic clustering for Internet of Things WSNs. EURASIP Journal on Wireless Communications and Networking. (Submitted)